Economics 2: Growth (Endogenous Growth)

© Kumar Aniket

Lecture 7, Week 9

Solow - III

Cobb Douglas production function

$$Y == K^{\alpha} (AL)^{1-\alpha}$$

Per-worker production function

$$y = A^{1-\alpha}k^{\alpha}$$

Determining the growth rate of y

$$\frac{\Delta y}{y} = (1 - \alpha) \frac{\Delta A}{A} + \alpha \frac{\Delta k}{k}$$

Growth rates in Solow -III

$$\frac{\Delta y}{y} = (1 - \alpha) \frac{\Delta A}{A} + \alpha \frac{\Delta k}{k}$$

1.
$$\frac{\Delta A}{A} = g$$

2. $\frac{\Delta k}{k} = g$ (steady state)

$$\Rightarrow \frac{\Delta y}{y} = (1 - \alpha) g + \alpha g = g$$

- \odot y grows at rate g in steady state because
 - \circ A always grows at the rate g
 - o k grows at the rate g in steady state

Externalities of Investment

Till now we have assumed that A grows at an exogenous rate g

Assumption (Positive Externalities of Investment)

The act of investment generates new ideas for both the investing firm and other firms in the economy. Specifically,

$$A = \lambda k \qquad (\lambda > 0)$$

stock of knowledge A is proportional to the stock of capital stock per worker k

- Investing $(k \uparrow)$ affects output y through two distinct channels:
 - Direct effect: greater capital stock per worker lead to greater output per worker
 - **Indirect effect**: higher capital stock per worker leads to higher value *A* which leads to higher output per worker.

The Two Channels

- ⊙ Investing $(k \uparrow)$ affects output y through two distinct channels:
 - Direct effect: higher k leads to higher y
 - **Indirect effect**: higher *k* leads to higher value of *A* which leads to higher *y*.

$$y = (A)^{1-\alpha} k^{\alpha}$$

$$= (\lambda k)^{1-\alpha} k^{\alpha}$$

$$= \lambda^{1-\alpha} k$$

$$\Rightarrow \frac{y}{k} = \lambda^{1-\alpha} = \text{constant}$$

$$\Rightarrow \frac{\Delta y}{y} = \frac{\Delta k}{k}$$

Deriving Endogenous Growth

$$\frac{\Delta K}{K} = s \cdot \frac{Y}{K} - \delta$$

$$\Rightarrow \frac{\Delta k}{k} = s \cdot \frac{y}{k} - (\delta + n)$$

$$= s \cdot \lambda^{1-\alpha} - (\delta + n)$$

• growth rate of k depends on the s, δ, n and λ

Endogenous Growth

$$\Rightarrow \frac{\Delta y}{y} = s \cdot \lambda^{1-\alpha} - (\delta + n)$$

Perpetual growth of k and y if $s \cdot \lambda^{1-\alpha} > (\delta + n)$

- New Results:
 - 1. Steady state can only be defined in terms of growth rates. It cannot be defined in terms of levels anymore.
 - 2. Growth rate of y and k depends on δ , n, s and crucially on λ
 - \circ Countries with higher λ grow faster. Explains why developed economies keep growing faster than certain under-developed. (due to higher λ)
 - Lower saving rate can lead to lower growth
 - Higher population growth rate can lead to slower growth.
 Paul Romer attributes slowdown in US growth in the 60s to this effect.

Factor Prices

For Cobb-Douglas function: $\frac{(r+\delta)K}{Y} = \alpha$

$$\mathbf{r} = \frac{\partial Y}{\partial K} - \delta = \alpha \frac{Y}{K} - \delta$$
$$= \alpha \frac{y}{k} - \delta = \alpha \lambda^{1-\alpha} - \delta$$

o r is a constant in the economy

Similarly given that $\frac{\mathbf{w} \cdot \mathbf{L}}{\mathbf{Y}} = 1 - \alpha$

$$\mathbf{w} = (1 - \alpha)\mathbf{y} = (1 - \alpha)\lambda^{1 - \alpha}\mathbf{k}$$

 w grows at the same rate a k, i.e. at the economy wide growth rate g.

Summary: Endogenous Growth

- Externalities of capital investment create an extra channel through which investment affects the output
- Technological Progress is endogenised
 - Stock of Knowledge A is proportional to capital stock per worker k
- \odot We get perpetual growth of k and y which depends on
 - \circ s, δ , n
 - \circ the strength of externality of capital investment, namely the value of λ
 - \circ higher the value of λ , the faster the economy grows
- \odot r is constant and w grows at the rate at which k and y grows