Poverty Trap with Convex Production Function:
The role of Public and Private Capital

Kumar Aniket
University of Cambridge
25 September 2014

Abstract. The objective of the paper is to explain why poverty traps may emerge with an entirely convex aggregate production function. It does so by delineating the role private capital plays in the accumulation of public capital and vice-versa. Governments accumulate public capital stock from the tax revenues and entrepreneurs accumulate private capital stock from private savings. The output of the economy is a function of stock of both types of capital and the two types of capital are complementary. Both the private sector and government leverage their respective income streams to borrow from the capital markets. If marginal returns to total capital (public and private) is decreasing, the economy converges to a unique per-capita output level and exhibits the standard convergence properties of the Solow growth model. Conversely, if marginal returns to total capital is increasing, there is a poverty trap region or a threshold below which the economy is in a low steady state.

The paper shows that the private sector’s ability to leverage their income stream to borrow interacts with the public sector’s ability to leverage their tax revenues to borrow and determines either the steady-state per-capita output or the size of the poverty trap, depending on marginal returns to total capital. Consequently, increasing either government’s or private sector’s leverage factors increases the per-capita output or decreases the poverty trap through both a direct and indirect channel. The policy makers thus have to put equal emphasis on processes that facilitate the augmentation of public and private capital. It also could potentially explain why foreign aid is ineffective in springing an economy from a poverty trap if it only augments public capital stock, leaving private capital stock as it is.

Keywords: Economic Growth, Poverty Trap, Financial Market, Public Capital, Infrastructure

JEL Classification: O11, O16, 041, O43
1. Introduction

Let's start with the story of a town called Hathin in India to motivate the paper. Hathin is typical nondescript small town like so many others in the developing world. Even though it is merely, 75.1 kilometres away from New Delhi, the glistening capital of India, it could be a world away with its pot-holed roads, lack of basic infrastructure, absent civil servants, impecunious inhabitants and lack of any perceptible economic activity.

In spite of its physical proximity to a lucrative market like Delhi, there is hardly any entrepreneurial activity in Hathin. Among other things, the lack of basic infrastructure and pot-holed roads add significantly to the cost of any production process and ensure that there is very little entrepreneurial activity in Hathin (Aniket, 2006). So, why doesn’t the government simply invest upfront in roads and infrastructure to encourage economic activity. The first obvious answer is that there is no entrepreneurial activity in Hathin and the government gets no tax revenues from Hathin. A rational resource constrained government may thus feel that there is no point in investing in Hathin’s infrastructure.

So, there is no infrastructure because there is no private entrepreneurial activity and there is no private entrepreneurial activity because there is no infrastructure.\(^1\) This feedback loop creates a poverty trap. It also sounds like a typical coordination failure, which can be easily solved if the government is able to invest upfront in infrastructure and wait for the entrepreneurial activity to build up. If the economic activity flourishes, it would allow the government to recover its upfront investment in infrastructure. If it is that easy, why does Hathin, like large parts of the development world, still have such woefully inadequate infrastructure.

There is another added layer of complication beyond the coordination failure. Both the government and potential entrepreneurs in Hathin are credit constrained. Both the government and the private entrepreneurs need to borrow from the financial markets in order to invest in public capital and private capital respectively. The financial markets, if it exists, may allow the government and entrepreneurs to leverage their current income by a certain factor. Consequently, this lack of access to capital which results from imperfect capital markets makes it more difficult to solve the coordination problem. Not being able to borrow increases the size of the poverty trap dramatically.

In what follows, we build a simple of model to illustrate how imperfect capital markets create this poverty trap. Even though the example above of Hathin may seem to leave a linger doubt that it is indivisibilities in the investment process that leads to the poverty trap, in what follows, we have a convex production process with no indivisibilities in either public

\(^1\)Gollin and Rogerson (2010), Fan and Rosegrant (2008), Teravaninthorn and Raballand (2008) and Gollin and Rogerson (2010) are papers that present empirical evidence from Africa that road infrastructure significantly restricts economic growth.
capital or private capital. In spite of a convex production process, we obtain a poverty trap that increases in size with the imperfection\(^2\) in the credit market in an unexpected way.

This paper takes its primary motivation from Lucas (1990), which has a self-explanatory title, “Why Doesn’t Capital Flow from Rich to Poor Countries?” The rich countries have higher capital stock and presumably a lower marginal productivity than poor countries, which should lead to capital flows from the rich to the poor countries. Actually, the global capital flows are dominated either by flows between developed countries or between the developed and the emerging countries. (Aguiar and Gopinath, 2007; Neumeyer and Perri, 2005) In comparison, capital flows to the poor developing countries are nothing more than a trickle.

Lucas (1990) proposed two main candidates, differences in the complementary inputs, like human capital and total factor productivity, and frictions in the global capital markets. The paper did not satisfactorily answer the question it set for itself. If it is indeed the differences in the complementary inputs that lead to differences in per-capita income, why can’t free flow of capital eliminate the differences in the complementary inputs across the world? For instance, if an entrepreneur starts a production process in a poor country, the human capital of the local labour would get upgraded over time through the process of learning-by-doing. In another influential paper, Lucas (1990) concludes that a very large part of the growth in fast growing economies like the East Asian economies can to be attributed to accumulation of human capital through the process of learning by doing, which, in turn has been stimulated by trade. If indeed there are large differences in the complementary inputs across the world, arguing in a similar vein, it is not clear why free flow of capital along with international trade and factor mobility cannot eliminate the differences in factor productivity across countries in the world.\(^3\)

Walter Wriston, the Chairman of Citibank from 1967 to 1984, argued in that there was no cause for concern about lending to the Latin American countries in the 1970s because “countries don’t go bankrupt”. Of course, he was proved wrong but he may have been arguing that lending to sovereign countries leads to private economic activity and thus improve the fiscal position of the country. What he or other involved in lending recklessly to the Latin American countries in 1970s may not have appreciated is that both the government and private entrepreneurs need access of credit in order for a country to realise its full potential.

Lack of fiscal capacity of state is both the symptom and cause of lack of development. Richer countries tend to raise more taxes, provide better public goods and have more economic activity than poor countries. (Baumsgaard and Keen, 2010; Besley and Persson, 2009)

\(^2\)That is, the size of the poverty trap increases as the government and private entrepreneur’s ability to leverage their current revenues decrease.

\(^3\)If it is the case that capital market frictions stem the flow of capital, then the determinants of these frictions should be pinned down precisely.
There is an endogenous relationship between provision of public goods or fiscal capacity of the state and the extent of private economic activity in the economy.\(^4\)

Unravelling this endogenous relationship between public goods provision and private economic activity is critical to getting to grips with the problems faced by the poorest countries in the world. Lack of public goods provisions is blamed on inefficiency and corruption of the governments in the poor countries (Acemoglu, 2006, 2008). In this paper, we want to abstract from the political economy questions and focus on the resource constraints that conscientious governments in the poor country face when they aspire to accumulate public capital stock. We assume that the government is benign and conscientiously invests all its tax revenues into public good.\(^5\)

Quah (1997) was the first one to emphasise the stratification in world income distribution and a possible shift towards a bimodal distribution. Even if there is some conditional convergence across the world, it is painfully slow. In contrast there is a lot of evidence of convergence within the OECD countries (Acemoglu, 2009). This suggests the economic environment faced by the poor countries are distinct from the rest of the world and there are some specific factors that sustain this divergence. The poorest of the poor countries thus stagnate while the rest of the world continues to grow. Our wider focus is on the set of conditions that trap a country or a region in a vicious cycle to poverty, independent of the inefficiencies and corruption of the government. The paper thus aims to explore why even conscientious governments in the poor countries may get caught in a poverty trap, in spite of some access to global capital markets.

Lucas (1990) looks at private capital flows but the same question can be rephrased in term of why capital does not flow to the governments of poor countries for accumulation of public goods. Trefler (1993) and Caselli and Feyrer (2007) find very little difference in returns to capital at the margin across across the countries. Yet, at the same time, there is considerable variation in the stock of public capital capital across the world. Why can’t the conscientious governments of poor countries borrow and invest in public capital stock?

The fact that capital flows are dominated either between the developed countries or from the developed to emerging countries suggests that the returns to capital maybe increasing in capital stock. Only countries that cross a threshold in terms of capital stock can attract the international flow of capital and the flow of capital is dominated by the countries that have the highest capital stock.

\(^4\)Besley and Persson (2008) suggests that external conflicts serve as an exogenous impulse that increases the tax revenue, allowing a country to increase its investment in its fiscal capacity. They find that civil wars lead to smaller investments in fiscal capacity, whereas prospects of external war generally lead to larger investments.

\(^5\)Acemoglu (2005) models the impact of corrupt rulers that divert tax revenues to benefit themselves and finds that neither very weak or very strong states are good for the economy.
In our model, each country has two types of capital stock, public and private capital stock. The two types of capital stock are complementary with respect to each other. The process that determines the accumulation of one type of capital stock is influenced by the level of the other type of capital stock. The accumulation of private capital stock moves hand in hand with public capital stock.

The paper models poverty trap with an aggregate production function that is convex in both public and private capital. It examines the role capital markets can play in reducing the extent of the poverty trap, allowing poor countries at the margin to escape. The poverty trap in our model emerge only when marginal return to total capital, widely defined as including both public and private capital stock, is increasing in total capital. If the returns to total capital is decreasing in total capital, the economy will behave like the Solow Growth model and exhibit conditional convergence.

The supply of capital from the global financial markets is homogenous. The capital is then differentiated by the end users. The end users in the model are the government and the private entrepreneurs, who use the capital for accumulating public capital and private capital stock respectively. For poverty traps to exist, the returns at the margin need to be increasing in the total capital stock, that is the sum of private and public capital. At the margin, the returns to both, public capital and private capital, are decreasing on their own.

If returns to the total capital stock is increasing there is a low stable steady-state and a high unstable steady-state, in terms of per-capita income. The low stable steady state has a catchment area which we pin down. An economy that gets caught in the catchment area surrounding the low steady-state, cannot escape and would eventually converge to a low per-capita income. If the economy starts away from the catchment area, it grows perpetually. Conversely, if the returns to total capital stock is diminishing, there a unique stable steady-state and the economy converges to this steady state just like in the Solow Growth model.

Papers like Galor and Zeira (1993) Aghion and Bolton (1997) and Matsuyama (2000) have previously modelled poverty traps as a result of credit frictions in presence of non-convexities technology. In this paper, the technology is convex. We attempt to explain the bi-modal distribution obtained by Quah (1997), while keeping the model as close as possible to the Solow model.

In Section 3 we model the economy in a non-co-operative environment under autarky. The government imposes a tax on entrepreneurs and funds the public capital investment in the economy through those tax revenues. In section 4 we model the economy in a non-co-operative environment with access to an imperfect global markets. Like Section 3, the public capital is financed through tax revenues. There is an enforcement problem associated with

\[\text{We make a strong assumption that the government is conscientious and invests all its resources into public goods and does not divert any resource.}\]
debt contracts, which implies that the government and entrepreneurs are constrained in the amount they borrow.

2. The Environment

The economy has a constant population that is normalised to 1. The tax rate is t and the agents save s proportion of their net-tax income and consume the rest. There is no exogenous or endogenous technological progress in the economy. The output of the economy y is a function of the installed public capital \bar{k} and private capital k in the economy.

$$y = \bar{k}^\beta \cdot k^\alpha$$ \hspace{1cm} (1)

where $\beta \in (0,1)$ and $\alpha \in (0,1)$. We assume that private capital k is exclusively installed by the entrepreneurs and public capital \bar{k} is exclusively installed by the government in the economy.

We normalise the production function so that $\bar{k} = 0$, $k = 0$ and $y = 0$ represents the point where production takes place without any capital and just using natural resources, i.e., the circumstances as they exist in the poorest countries in the world where there is almost no capital used in production process.

The production function may or may not have diminishing returns to capital depending on the value of $\alpha + \beta$. We assume that both \bar{k} and k depreciate at an identical rate δ.

3. Autarky

In this section, we analyse the evolution of public capital \bar{k} and private capital k in autarky where the entrepreneurs and government have no access to global capital markets. We have a dichotomy where the government only invests to accumulate public capital and entrepreneurs only invest to accumulate private capital. The government and the private sector make their respective decisions independent of each other.

The government pays for public capital by imposing a proportional tax t on the entrepreneurs and the entrepreneurs are able to keep $(1 - t)$ for themselves. The per-capita saving of entrepreneurs is given by $s_p = s(1 - t)y$ which goes towards augmenting the private capital stock k after the depreciated private capital stock is replaced. The government is able to garner resources to the tune of $s_g = ty$ to augment public capital stock \bar{k} after the depreciated public capital stock has been replaced. For simplicity, we assume that both \bar{k} and k depreciate at the same rate δ.

The capital accumulation conditions for k and \bar{k} are given by $\Delta k_t = s_{pt} - \delta k_t = s(1 - t)y_t - \delta k_t$ and $\Delta \bar{k}_t = s_{gt} - \delta \bar{k}_t = ty_t - \delta \bar{k}_t$ respectively, where $\Delta k_t = (k_{t+1} - k_t)$ and $\Delta \bar{k}_t = (\bar{k}_{t+1} - \bar{k}_t)$.

§
This gives use the following system of difference equations.

\[k_{t+1} = s(1-t) \bar{k}_t^\beta k_t^\alpha + (1-\delta)k_t \]
(2)

\[\bar{k}_{t+1} = t \bar{k}_t^\beta k_t^\alpha + (1-\delta)\bar{k}_t \]
(3)

![Figure 1. Autarky: \(k(\bar{k})\) and \(\bar{k}(k)\) locus curves if \(\alpha + \beta > 1\).](image)

Setting \(\Delta k_t = 0\) in (2) gives us the locus \(k(\bar{k})\) in (4) along which private capital does not change.

\[k(\bar{k}) = \left(\frac{s(1-t)}{\delta} \right)^{\frac{1}{1-\alpha}} \bar{k}^{\frac{\beta}{1-\alpha}} \]
(4)

Setting \(\Delta \bar{k}_t = 0\) in (3) gives us the \(\bar{k}(k)\) locus in (5) along which public capital does not change.

\[\bar{k}(k) = \left(\frac{t}{\delta} \right)^{\frac{1}{1-\beta}} k^{\frac{\alpha}{1-\beta}} \]
(5)

The shape of the locus \(k(\bar{k})\) and \(\bar{k}(k)\) in (4) and (5) depends on \((\alpha + \beta - 1)\). If \(\alpha + \beta > 1\), then \(\frac{d^2k}{dk^2}|_{k(\bar{k})} > 0\) and \(\frac{d^2\bar{k}}{dk^2}|_{\bar{k}(k)} > 0\) and the resulting loci \(k(\bar{k})\) and \(\bar{k}(k)\) are depicted in Figure 7.
Conversely, if $\alpha + \beta < 1$, then $\frac{d^2 k}{dk^2}|_{k(\bar{k})} < 0$ and $\frac{d^2 \bar{k}}{d\bar{k}^2}|_{\bar{k}(k)} < 0$ and the resulting loci $k(\bar{k})$ and $\bar{k}(k)$ are depicted in Figure 2. \(^8\)

Let's define $k_A = \bar{k}_A = 0$. $k_{B,k}$ and $\bar{k}_{B,k}$ are defined as follows.

\[
k_{B,k} = \left[s^{1-\beta} \cdot \frac{(1-t)^{1-\beta} t^\beta}{\delta} \right]^{\frac{1}{1-(\alpha+\beta)}}
\]
\[
\bar{k}_{B,k} = \left[s^\alpha \cdot \frac{(1-t)^\alpha t^{1-\alpha}}{\delta} \right]^{\frac{1}{1-(\alpha+\beta)}}
\]

It follows from the analysis above that economy has an unique stable steady-state if $\alpha + \beta < 1$ and one stable and one unstable steady-state if $\alpha + \beta > 1$. We summarise with Proposition 1.

\(^7\)If $\alpha + \beta > 1$, in Figure 1, $\Delta k_t > 0$ is on the right of $k(\bar{k})$ locus, $\Delta k_t < 0$ is on the left of $k(\bar{k})$ locus, $\Delta \bar{k}_t > 0$ above the $k(\bar{k})$ locus and $\Delta \bar{k}_t < 0$ below the $k(\bar{k})$ locus.

\(^8\)If $\alpha + \beta < 1$, in Figure 2, $\Delta k_t > 0$ below the $k(\bar{k})$ locus, $\Delta k_t < 0$ above the $k(\bar{k})$ locus, $\Delta \bar{k}_t > 0$ on the left of $\bar{k}(k)$ locus and $\Delta \bar{k}_t < 0$ is on the right of $\bar{k}(k)$ locus.
Proposition 1. In autarky with public capital funded by a proportional tax, the economy would have following steady-state(s).

i. If \(\alpha + \beta < 1 \), the economy has a unique stable steady-state at \((k_{B_3}, \bar{k}_{B_3})\).

ii. If \(\alpha + \beta > 1 \) the economy has a stable steady-state at \((k_A, \bar{k}_A) = (0, 0)\) and an unstable steady-state at \((k_{B_3}, \bar{k}_{B_3})\).

iii. If \(\alpha + \beta = 1 \), then there is stable steady-state at \((k_A, \bar{k}_A) = (0, 0)\) if \(\frac{t^{1-\alpha}}{(1-t)^{1-\beta}} < \delta^{\alpha-\beta} \left(\frac{1}{s} \right)^{1-\beta} \) and unstable steady-state at \((k, \bar{k}) = (0, 0)\) if \(\frac{t^{1-\alpha}}{(1-t)^{1-\beta}} > \delta^{\alpha-\beta} \left(\frac{1}{s} \right)^{1-\beta} \).

If \(\frac{t^{1-\alpha}}{(1-t)^{1-\beta}} = \delta^{\alpha-\beta} \left(\frac{1}{s} \right)^{1-\beta} \), then there is a continuum of steady-states at \(k = \bar{k} \), where \(k = [0, \infty) \).

Proposition 1 basically says that the economy behaves like the traditional Solow growth model and converges to the steady state at \((k_{B_3}, \bar{k}_{B_3})\) if \(\alpha + \beta < 1 \). Conversely, if \(\alpha + \beta > 1 \), the economy exhibits a poverty trap. It converges to \(k_A = \bar{k}_A = 0 \) if either \(k < k_{B_3} \) and \(\bar{k} < \bar{k}_{B_3} \). Corollary 3.1 summarises the growth and convergence properties of this economy.

Corollary 3.1. In autarky with public capital funded by a proportional tax,

i. If \(\alpha + \beta < 1 \), the economy will converge to a stable steady-state \((k_{B_3}, \bar{k}_{B_3})\) where

\[
y_{B_3} = y(\bar{k}_{B_3}, k_{B_3}) = \left(\frac{s^\alpha}{\delta^{\alpha+\beta}} \right) \left(1 - t \right)^{\alpha} t^{\beta} \]

ii. if \(\alpha + \beta > 1 \),

(a) \(k \) and \(\bar{k} \) will have perpetual negative growth till the economy converges to the stable steady-state \((k_A, \bar{k}_A) = (0, 0)\) if \(k \in [0, k_{B_3}) \) and \(\bar{k} \in [0, \bar{k}_{B_3}) \)

(b) there will be no growth in \(k \) and \(\bar{k} \) if it starts from \(k = k_{B_3} \) and \(\bar{k} = \bar{k}_{B_3} \)

(c) \(k \) and \(\bar{k} \) will will perpetual positive growth if it starts from \(k \in (k_{B_3}, \infty) \) and \(\bar{k} \in (\bar{k}_{B_3}, \infty) \)

If \(\alpha + \beta < 1 \), the economy converges to the steady state per-capita output level \(y_{B_3} \). In this case, \(y_{B_3} \) is increasing in \(s \) and \((1 - t)^{\alpha} t^{\beta} \). Just like the traditional Solow growth model, the output per-capita is increasing in the savings rate.

If \(\alpha + \beta > 1 \), the economy diverges from \(y_{B_3} \). That is the economy explodes if it is above the \(y_{B_3} \) threshold and converges to \((0, 0)\) if it is below the \(y_{B_3} \) threshold. In this case, \(y_{B_3} \) is decreasing in \(s \) and \((1 - t)^{\alpha} t^{\beta} \). \(y_{B_3} \) also determines the size of the poverty trap, that is the size of the poverty trap decreases as saving rate increases.

It is important to interpret \(s \) correctly. \(s = \frac{s}{(1-t)y} \) is the proportion of economy’s net tax income that is invested into private capital. Thus, \(s \) is not affected by savings under the pillow. Thus, if for a poor economy, \(s \) increases due the financial sector maturing, then according to (7), the size of the poverty trap would decrease. We summarise with Corollary 3.2.
Corollary 3.2. In autarky,

i. if $\alpha + \beta < 1$, the steady-state output of the economy is increasing in s

ii. if $\alpha + \beta > 1$, the poverty trap for the economy is decreasing s.

4. Capital Markets with Enforcement Problem

The credit market has an enforcement problem, where the lenders find it difficult to enforce contracts and extract the full repayment from the borrower. If the borrower chooses to default, then lender can only wrench μ proportion of the output from the borrower. We assume that the borrower can choose to default on a loan but cannot choose not to pay their taxes due to the government.

If an representative entrepreneur borrows b at interest rate r and the lender can only wrench μ_p proportion of her output, she will only repay if $rb \leq \mu_p(1-t)y$. b_p, the maximum amount that the borrower can borrow from the capital markets, is given by

$$b_p = \frac{\mu_p(1-t)y}{r}$$ (8)

Similarly, if the government borrows b at interest rate r and the lender can only wrench μ_g proportion of the government’s tax revenues, it will only repay if $rb \leq \mu_g ty$. b_g, the maximum amount that the borrower can borrow from the capital markets, is given by

$$b_g = \frac{\mu_g ty}{r}$$ (9)

If private entrepreneur’s borrow b_p or less and government borrows b_g or less, it is in their interest to repay back and there would be no defaults on loans in equilibrium. μ_g and μ_p and can be considered leverage factors. Holding the level of level of output, interest rate and tax rate constant, if we increase μ_p and μ_g, it increases the maximum amount that the government and the private entrepreneurs can borrow.

We continue with the assumption that there is a clear dichotomy where only entrepreneurs invest in private capital and government invests only in public capital. The entrepreneur’s savings are given by $s_p = s(1-t)y$ and government’s available resources for public capital investment are $s_g = ty$. Both public capital and private capital stock depreciate at the same rate δ.

We assume that the entrepreneurs and government borrow the maximum amount they can in order to invest in private and public capital stock respectively. Investment in private capital is given by $\Delta k_t = s_p + b_p - \delta k_t$ and public capital is given by $\Delta \bar{k}_t = s_g + b_g - \delta \bar{k}_t$.9

Public and private accumulation of capital are thus determined by the equations $\Delta k_t = 9$

9The assumption that entrepreneurs and government borrow the maximum amount has to explored more carefully. As capital accumulation takes place, the marginal returns would at some point get lower than r and limit the growth.

§
\((s + \frac{\mu_p}{r})(1 - t)y_t - \delta k_t\) and \(\Delta \bar{k}_t = \left(1 + \frac{\mu_g}{r}\right)ty_t - \delta \bar{k}_t\). This gives the following system of difference equations.

\[
k_{t+1} = \left(s + \frac{\mu_p}{r}\right)(1 - t) \bar{k}_t^{\beta} k_t^{\alpha} + (1 - \delta)k_t
\]

\[
\bar{k}_{t+1} = \left(1 + \frac{\mu_g}{r}\right)t \bar{k}_t^{\beta} k_t^{\alpha} + (1 - \delta)\bar{k}_t
\]

Imposing the condition that \(\Delta k = \Delta \bar{k} = 0\) on (10) and (11) gives us the loci \(k(\bar{k})\) and \(\bar{k}(k)\).

\[
k(\bar{k}) = \left(s + \frac{\mu_p}{r}\right)\frac{(1 - t)}{\delta} \bar{k}^{1-\alpha} k^{\frac{\alpha}{1-\alpha}}
\]

\[
\bar{k}(k) = \left(1 + \frac{\mu_g}{r}\right)\frac{t}{\delta} k^{1-\beta} \bar{k}^{\frac{\beta}{1-\beta}}
\]

Figure 3. Capital Markets with Enforcement Problem: \(k(\bar{k})\) and \(\bar{k}(k)\) reaction curves when \(\alpha + \beta > 1\)

The shape of the locus \(k(\bar{k})\) and \(\bar{k}(k)\) in (12) and (13) depends on \((\alpha + \beta - 1)\). If \(\alpha + \beta > 1\), then \(\frac{\partial^2 k}{\partial k^2}\bigg|_{k(\bar{k})} > 0\) and \(\frac{\partial^2 \bar{k}}{\partial \bar{k}^2}\bigg|_{\bar{k}(k)} > 0\) and the resulting loci \(k(\bar{k})\) and \(\bar{k}(k)\) are depicted in Figure 11.
Figure 4. Capital Markets with Enforcement Problem: $k(\bar{k})$ and $\bar{k}(k)$ reaction curves when $\alpha + \beta < 1$

3. Conversely, if $\alpha + \beta < 1$, then $\frac{d^2k}{dk^2}|_{k(\bar{k})} < 0$ and $\frac{d^2\bar{k}}{d\bar{k}^2}|_{\bar{k}(k)} < 0$ and the resulting loci $k(\bar{k})$ and $\bar{k}(k)$ are depicted in Figure 4. For a given \bar{k}, k is higher in (12) than in (4) if $\mu_p > 0$. Similarly, for a given k, \bar{k} is higher in (13) than in (5) if $\frac{\mu_g}{r} > 0$ or $\mu_g > 0$. Access to global capital markets stimulate both the investment of public and private capital if $\mu_p > 0$ and $\mu_g > 0$.

k_{b_4} and \bar{k}_{b_4} are defined as follows.

$$k_{b_4} = \left[s + \frac{\mu_p}{r}\right] \left(1 + \frac{\mu_g}{r}\right)^{1-\beta} \left(1 - t\right)^{-\beta} \left[\frac{1}{\delta} \right]^{\frac{1}{1-(\alpha+\beta)}}$$

$$\bar{k}_{b_4} = \left[s + \frac{\mu_p}{r}\right]^{\alpha} \left(1 + \frac{\mu_g}{r}\right)^{1-\alpha} \left(1 - t\right)^{\alpha} \left[\frac{1}{\delta} \right]^{\frac{1}{1-(\alpha+\beta)}}$$

(14)

Proposition 2 describes the steady-state properties of the economy.

\(\text{Assuming } r \text{ is less than infinity.}\)
Proposition 2. With an enforcement problem in the global capital markets and public capital funded by a proportional tax,

i. if \(\alpha + \beta < 1\), the economy has a unique stable steady-state at \((k_{B_4}, \bar{k}_{B_4})\).

ii. if \(\alpha + \beta > 1\), the economy has a stable steady-state at \((k_A, \bar{k}_A) = (0, 0)\) and an unstable steady-state at \((k_{B_4}, \bar{k}_{B_4})\).

iii. if \(\alpha + \beta = 1\), then there is stable steady-state at \((k_A, \bar{k}_A) = (0, 0)\) if \(t < \frac{sr + \mu_p}{(1 + s)r + 2\mu_g}\) and unstable steady-state at \((k, \bar{k}) = (0, 0)\) if \(t > \frac{sr + \mu_p}{(1 + s)r + 2\mu_g}\). If \(t = \frac{sr + \mu_p}{(1 + s)r + 2\mu_g}\), then there is a continuum of steady-states at \(k = \bar{k}\), where \(k = [0, \infty)\).

If there is no access to credit, then the whole problem reduces to the autarky analysis in Section 3. To see this, if we set \(\mu_p = \mu_g = 0\), loci (12) and (13) reduces to loci (4) and (5) in Section 3. Corollary 4.1 describes the convergence properties of the economy.

Corollary 4.1. With an enforcement problem in the global capital markets and public capital funded by a proportional tax,

i. if \(\alpha + \beta < 1\), the economy will converge to a stable steady-state \((k_{B_4}, \bar{k}_{B_4})\) where

\[
y_{B_4} = y(\bar{k}_{B_4}, k_{B_4}) = \left[s + \frac{\mu_p}{r} \right]^\alpha \left(1 + \frac{\mu_g}{r} \right)^\beta \frac{(1 - t)^{\alpha t^\beta}}{\delta^{\alpha + \beta}} \tag{15} \]

ii. if \(\alpha + \beta > 1\),

(a) \(k\) and \(\bar{k}\) will have perpetual negative growth till the economy converges to the stable steady-state \((k_A, \bar{k}_A) = (0, 0)\) if \(k \in [0, k_{B_4})\) and \(\bar{k} \in [0, \bar{k}_{B_4})\)

(b) there will be no growth in \(k\) and \(\bar{k}\) if it starts from \(k = k_{B_4}\) and \(\bar{k} = \bar{k}_{B_4}\)

(c) \(k\) and \(\bar{k}\) will have perpetual positive growth if it starts from \(k \in (k_{B_4}, \infty)\) and \(\bar{k} \in (\bar{k}_{B_4}, \infty)\)

If \(\alpha + \beta < 1\), the economy converges to the steady state per-capita output level \(y_{B_4}\). In this case, \(y_{B_4}\) is increasing in \(s, \mu_p, \mu_g\) and \((1 - t)^{\alpha t^\beta}\). If \(\alpha + \beta < 1\), the economy behaves just like the traditional Solow growth model.

If \(\alpha + \beta > 1\), the economy diverges from \(y_{B_4}\). That is the economy explodes if it is above the \(y_{B_4}\) threshold and converges to \((0, 0)\) if it is below the \(y_{B_4}\) threshold. In this case, \(y_{B_4}\) is decreasing in \(s, \mu_p, \mu_g\), and \((1 - t)^{\alpha t^\beta}\). \(y_{B_4}\) also determines the size of the poverty trap, that is the size of the poverty trap decreases as saving rate increases.

\[\text{From Equation (14) we can see that } t = \beta \text{ maximises } k_{B_4} \text{ if } \alpha + \beta < 1 \text{ and minimises it if } \alpha + \beta > 1. \text{ Similarly, } t = 1 - \alpha \text{ maximises } k_{B_4} \text{ if } \alpha + \beta < 1 \text{ and minimised it if } \alpha + \beta > 1.\]
Lemma 4.1. With an enforcement problem in the global capital markets and public capital funded by a proportional tax,

i. If \(\alpha + \beta < 1 \), the steady-state output of the economy is increasing in \(\mu_p \), \(\mu_g \), \(s \) and decreasing in \(r \).

ii. If \(\alpha + \beta > 1 \), the size of the poverty trap is decreasing in \(\mu_p \), \(\mu_g \), \(s \) and increasing in \(r \).

iii. The marginal impact of \(\mu_g \) on \(y_{B_4} \) is increasing in \(\mu_p \) and vice-versa.

Using Equation (15), we show in Section A that \(\frac{\partial y_{B_4}}{\partial \mu_p} > 0 \), \(\frac{\partial y_{B_4}}{\partial \mu_g} > 0 \), \(\frac{\partial y_{B_4}}{\partial s} > 0 \), \(\frac{\partial y_{B_4}}{\partial r} < 0 \) if \(\alpha + \beta < 1 \) and \(\frac{\partial y_{B_4}}{\partial \mu_p} < 0 \), \(\frac{\partial y_{B_4}}{\partial \mu_g} < 0 \), \(\frac{\partial y_{B_4}}{\partial s} < 0 \), \(\frac{\partial y_{B_4}}{\partial r} > 0 \) if \(\alpha + \beta > 1 \). This shows that the steady state output is increasing in the saving rate, the government and private sector leverage factor and decreasing in interest rate if \(\alpha + \beta < 1 \). Conversely, if \(\alpha + \beta > 1 \), the size of the poverty trap is increasing in the saving rate, the government and private sector leverage factors and increasing in interest rate.

What is interesting is that \(y_{B_4} \) is a function of \(\left(s + \frac{\mu_p}{r} \right)^\alpha \left(1 + \frac{\mu_g}{s} \right)^\beta \). Thus, \(\mu_g \) and \(\mu_p \) complement each other’s impact on \(y_{B_4} \). We also show that \(\frac{\partial^2 y_{B_4}}{\partial \mu_p \partial \mu_g} > 0 \) holds irrespective of the value of \(\alpha + \beta \). Thus, an increase in \(\mu_p \) increases the marginal impact of \(\mu_g \) has on \(y_{B_4} \) more effective and vice-versa. The main thrust of the argument here is that policy markers have concomitantly facilitate both the government and the private sector’s ability to borrow from the capital markets. The broader point that any policy should take both the public capital’s role in accumulating private capital and private capital’s role in accumulating public capital into account.

Lemma 4.1 could also potentially explain why foreign aid on its own could potential fail under some circumstances. If \(\alpha + \beta > 1 \), an economy with low \(\mu_g \), \(\mu_p \), \(s \) and high \(r \) would have a very large poverty trap area. In this case it is critical that foreign aid should argue the pre-existing public capital such that economy’s public capital is greater the \(k_{B_4} \). If the foreign aid fails to do so, over time the economy will converge back to the low equilibrium and the foreign aid will have no impact. An alternative approach for external intervention in this economy could to try to facilitate policies that increase the \(\mu_p \), \(\mu_g \), \(s \) and decrease \(r \) and complement that with foreign aid once the size of the poverty trap has decreased. Of course, this assumes that the decrease in the required foreign aid is greater than fiscal cost associated with increasing the \(\mu_p \), \(\mu_g \), \(s \) and decreasing \(r \).

This shows that steady state output is increasing in \(\mu_g \) and \(\mu_p \) and the poverty trap is decreasing in \(\mu_g \) and \(\mu_p \). Further, the marginal impact each leverage factor has on \(y_{B_4} \) increases if the other leverage factor increases. Thus, an increase in \(\mu_p \) makes the effect the \(\mu_g \) has on \(y_{B_4} \) more effective and vice-versa.
5. Conclusion

The paper attempts to understand why the poorest countries in the world are not able to catch up with the richest countries in the world. We explore the role capital markets could potentially play in facilitating this catch up process.

We modelled the output as a function of public and private capital stock. The government’s role in the model is to impose a tax on private entrepreneurs and use the tax revenues to install the public capital stock. The government of the poor countries are able to access the capital markets to borrow and invest in public capital. We make a strong assumption here and assume that the government is always efficient and conscientious, that is, it invests all the tax revenues into the installing public capital.

We were able to show that if returns to total capital stock (public and private) in the economy was increasing, at low level of per capita income, the economy would be caught in a poverty trap. The size of the poverty trap in autarky is decreasing in the saving rate of the economy.

We also analysed the situation where the global capital markets were imperfect due to an enforcement problem and borrowers could leverage their income by a certain leverage factor. In this case, the size of the poverty trap depends on the both the government and entrepreneur’s leverage factor. Further, the two leverage factors are complementary. This implies that constraints on government’s ability to borrow in the capital markets constrains the entrepreneur’s ability to borrow. Similarly, constraints on the entrepreneur’s ability to borrow in the capital markets constrains the government’s ability to borrow.

Conversely, if the returns to total capital stock in the economy were decreasing, there would be no poverty trap. The economy would converge to the unique steady-state just like it does in the traditional Solow Model. In this case, adding public capital to the economy’s production function makes no substantial difference in the converges properties of the economy. We find that the steady state per-capita output level is increasing in the saving rate in autarky and decreasing in global interest rate if the global capital markets are perfect. With imperfect access to capital markets, the steady-state output level is increasing in the two leverage factors.

This paper attempts to explain why middle income economies like Brazil, China and India seem on track to converge with the rest of the OECD countries, where as other countries like sub-saharan Africa do not seem to be converging at all. Burgess and Besley (2003) show that poverty alleviation in China and India has far exceeded expectation of the Millennium Development Goal and Sub-Saharan Africa is lagging behind. Similarly, Collier (2007) bemoans the fact that growth in Indian and China has moved the focus away from the Africa, where things have not changed.
The model in this paper suggests that if returns to the total capital stock (public and private) is increasing, there is a clearly defined poverty trap. The economy thus needs a big push to emerge from the poverty trap in form of foreign aid. In the absence of aid, has access to imperfect capital markets decreases the size of the poverty trap. The size of the poverty trap in this case is determined by the interaction of government and private leverage factors. Policy makers in the past have chosen to either target public or private capital. Our model suggests that the most effective way to push an economy out of the poverty trap is to simultaneous give both the government and private sector greater access of capital.

access to capital global markets only helps the economy has once it has crossed a public and private capital threshold. If it does not cross the threshold, it remains forever caught in a poverty trap.

Appendix A. Signs for $\frac{\partial y_{B_4}}{\partial \mu_p}$ and $\frac{\partial^2 y_{B_4}}{\partial \mu_p \partial \mu_g}$

Equation (15) can be written as

$$\ln (y_{B_4}) = \frac{\ln (\psi) + \ln (K)}{1 - (\alpha + \beta)}$$

where $K = \frac{(1-t)\alpha \beta}{\delta\alpha + \beta}$, $\psi = (s + \frac{\mu_p}{r})^\alpha \left(1 + \frac{\mu_p}{r}\right)^\beta$ and $\ln (\psi) = \alpha \ln (s + \frac{\mu_p}{r}) + \beta \ln \left(1 + \frac{\mu_p}{r}\right)$.

This gives us the following.

$$\frac{\partial \ln (\psi)}{\partial r} = \left(\frac{-1}{r^2}\right) \left[\frac{\alpha \mu_p}{s + \frac{\mu_p}{r}} + \frac{\beta \mu_g}{s + \frac{\mu_p}{r}} \right] < 0$$

$$\frac{\partial \ln (\psi)}{\partial s} = \frac{\alpha}{s + \frac{\mu_p}{r}} > 0$$

$$\frac{\partial \ln (\psi)}{\partial \mu_p} = \frac{\alpha}{(s + \frac{\mu_p}{r})} \left(\frac{1}{r}\right) > 0$$

$$\frac{\partial \ln (\psi)}{\partial \mu_g} = \frac{\beta}{(1 + \frac{\mu_p}{r})} \left(\frac{1}{r}\right) > 0$$

$$\frac{\partial^2 \ln (\psi)}{\partial \mu_p \partial \mu_g} = 0$$

16
Using (16) and (17) we can show that

\[
\frac{\partial y_{B_4}}{\partial r} = \frac{y_{B_4}}{1 - (\alpha + \beta)} \left(\frac{\partial \ln (\psi)}{\partial r} \right) \begin{cases} < 0, & \text{if } \alpha + \beta < 1 \\ > 0, & \text{if } \alpha + \beta > 1 \end{cases}
\]

\[
\frac{\partial y_{B_4}}{\partial s} = \frac{y_{B_4}}{1 - (\alpha + \beta)} \left(\frac{\partial \ln (\psi)}{\partial s} \right) \begin{cases} > 0, & \text{if } \alpha + \beta < 1 \\ < 0, & \text{if } \alpha + \beta > 1 \end{cases}
\]

\[
\frac{\partial y_{B_4}}{\partial \mu_p} = \frac{y_{B_4}}{1 - (\alpha + \beta)} \left(\frac{\partial \ln (\psi)}{\partial \mu_p} \right) \begin{cases} > 0, & \text{if } \alpha + \beta < 1 \\ < 0, & \text{if } \alpha + \beta > 1 \end{cases}
\]

\[
\frac{\partial y_{B_4}}{\partial \mu_g} = \frac{y_{B_4}}{1 - (\alpha + \beta)} \left(\frac{\partial \ln (\psi)}{\partial \mu_g} \right) \begin{cases} > 0, & \text{if } \alpha + \beta < 1 \\ < 0, & \text{if } \alpha + \beta > 1 \end{cases}
\]

\[
\frac{\partial^2 y_{B_4}}{\partial \mu_p \partial \mu_g} = \frac{y_{B_4}}{1 - (\alpha + \beta)} \left[\frac{\partial^2 \ln (\psi)}{\partial \mu_p \partial \mu_g} + \frac{1}{1 - (\alpha + \beta)} \left(\frac{\partial \psi}{\partial \mu_p} \right)^2 \right]
\]

\[
= y_{B_4} \left[\frac{1}{1 - (\alpha + \beta)} \left(\frac{\partial \psi}{\partial \mu_p} \right)^2 \right] > 0
\]

References

Faculty of Economics, University of Cambridge, Sidgwick Avenue, Cambridge, CB3 9DD, UK

E-mail address: ka323@cam.ac.uk